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Using the procedure for an analogous situation in classical electromagnetic 
theory, a definition is proposed in general relativity for the gravitational field in 
the interior of a continuous distribution of matter. The procedure consists of 
introducing a small fictitious cavity inside the matter and proceeding to the 
limit when the cavity becomes vanishingly small. 

1. I N T R O D U C T I O N  

Classically, a " f i e ld"  is a derived concept introduced to explain the 
primary experimental result that bits of the physical world affect each 
other in various ways. A system is analyzed into particles which act as 
sources for fields, which in turn act on other particles. The fields act on the 
other particles according to the equations o f  motion,  and are related to their 
sources by the field equations. The field at a point is determined by the 
behavior of test particles (through the equations of motion). 

However, in view of Einstein's principle of equivalence for the gravita- 
tional field, one cannot determine the gravitational field through the 
motion of only one geodesically moving test pa r t i c l e - -a  free test particle 
reveals no acceleration in a freely falling "elevator." On the other hand, it 
is well known that the gravitational field reveals itself through the relative 
acceleration of neighboring free test particles. 

The relative acceleration of two geodesically moving test particles is 
given by the equation of geodesic deviation (Synge and Schild, 1956) 

~ 2 ~ a  a b c d 
- -  + R.bcaU T I u = 0  (1.1) 
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where ~a is the infinitesimal vector connecting the world lines, u a is the 
unit vector tangent to one of the world lines such that ua+/a-- 0, and s is the 
proper time along that world line. Equation (1.1) shows that the relative 
acceleration is determined by the Riemann curvature tensor, R,,bc a, which 
is thus given a physical meaning (Pirani, 1965). Hence we may regard the 
Riemann curvature tensor as the gravitational field. 

Now, it is well known that the Riemann curvature tensor has the 
following irreducible decomposition: 

a _ _  a a 1 a 

R , b c d  - -  C . b c d  "[- E.bcd -b  -g Rg.bcd (1.2) 

where Cab+ a is the Weyl conformal curvature tensor, 

d - -  I a a a 
E b~d -- ~ (8~ Rbd -- 8,~Rb~ + gbdg~ -- gbcgd ) 

a _ a a 
g.bcd- 6dgbc -- 6cgbd 

(1.3) 

(1.4) 

where g a b  is the Ricci tensor and R the curvature invariant. In view of 
Einstein's field equations, the Ricci terms in (1.2) may be regarded as the 
source terms (which vanish in the absence of matter). Accordingly, we 
adopt in this paper the viewpoint that the Weyl  tensor, C.~bca, is indeed the 
genuine gravitational field. 

However, the equation of geodesic deviation in (1.1) refers to particles 
moving in free space [where the curvature tensor reduces to the Weyl 
tensor in view of (1.2) and the field equations Rab=O]. Hence, having 
adopted the Weyl tensor C.~cd as the genuine gravitational field, the 
problem naturally arises as to what is the gravitational field inside a 
continuous distribution of matter. The main purpose of this paper is to 
propose a definition of the gravitational field inside matter. In this paper, 
an attempt is made to gain some insight into the problem by considering 
the gravitational field inside a weak distribution of matter. The exact 
theory is considered in a subsequent paper. 

2. A WEAK DISTRIBUTION OF MATFER 

If we assume that the gravitational field due to a macroscopic body 
(consisting of perfect fluid) is sufficiently weak to be treated as first-order 
deviations from a Minkowskian space-time manifold, we obtain, to the 
order 1 /c  2, the linear metric form 

ds 2 = (1 - 2~  / cZ)( dx°) z - (1 + 2rb / eZ)( dx  ~)2 (2.1) 

where 

(dx'~)2 ~ (dxt) 2 + (dx2) 2 + (dx3) 2 



Gravitational Field Inside Matter 171 

and d# is the Newtonian gravitational potential satisfying Poisson's equa- 
tion inside the body, c is the speed of light in vacuo, and 2q~<<c 2. Using the 
metric in (2.1), we find that the components of the Riemann curvature 
tensor (at any point inside the body) are given by 

c2Ro~vo = - ~b,/~ (2.2) 

(where Greek suffixes run from 1 to 3) while the components of the 
corresponding Weyl tensor are given by 

coe, ,  = R e,, - (8, ,ko /3c2)8of,  je 

Coaro = Roevo + (4r c 2) 8at (2.3) 

where 6~a is the Kronecker delta, [ ] denotes antisymmetrization, O is the 
proper density of the body, and k is the gravitational constant. Equation 
(2.3) shows that already in the linear theory, we can discern the Riemann 
tensor from the Weyl tensor [in view of the terms in (2.3) involving the 
proper density, p, of the body]. 

It follows from (2.2) and (2.3) that the linear gravitational field is 
given in terms of the Newtonian field N,~, where 

N~/~ ~ ~, ~e (2.4) 

3. DEFINITION OF THE FIELD INSIDE MATI'ER 

Suppose we introduce at any interior point P of matter a small 
fictitious cavity of arbitrary shape, volume r, and surface a. Suppose an 
observer inside the cavity uses (local) orthogonal Cartesian coordinate axes 
defined by a triad of (spacelike) unit vectors 

e2 

where the capital Latin letter labels the triads (A = 1,2,3) and the Greek 
letter a is a three-dimensional vector index (a = 1,2,3). By means of local 
experiments, such an observer can determine, for example, the coordinates 
of a neighboring particle relative to his own frame. In this way, he obtains 
for the physical components of the Newtonian field N,a the nine invariants 
NAn defined by 

NAB ~effeffN,,l~ (3. l) 
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Consider now the invariants 

Kofmti 

d~ s = eft d P, B 

On using the integral solution for q~, we can rewrite (3.2) as 

(3.2) 

% = fpe f f (1 / r ) , Jv '  (3.3) 

where r is the (Euclidean) distance from P to any volume element dv' of 
the distribution and p is assumed constant for the distribution of matter 
outside the cavity. The expression peff in the integrand in (3.3) could be 
referred to as the intensity of gravitation in anology with the "intensity of 
magnetization" or "polarization vector" in the case of a dielectric. 

Now, the volume integral in (3.3) can be rewritten as 

f (effo/r),r f[ (effp),jr]dv' (3.4) 

on using the identity 

F ( / r ) ,~=-- (F~/r ) ,a- (F~,~) / r  (3.5) 

Hence, on transforming the first integral on the right-hand side of (3.4) to 
a surface integral (by means of Gauss' theorem), we obtain 

where E denotes the bounding surface of the entire distribution of matter, 
the unit vector n~ is the outward-drawn normal to Z and o, and where the 
second integral on the right-hand side of (3.4) vanishes for constant p and 
eg. 

It follows also from (3.6) and (3.1) that the physical components of the 
gravitational field as measured by an observer inside the cavity are given 
by 

N~.-~ s + L(P/r),~e~ePsnBdo (3.7) 

Accordingly, we propose a definition of the field at the interior point P as 

lim (e~effN~l~) (3.8) 
"r---->0 

the limit being evaluated for a cavity of vanishingly small volume ~-. 
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In view of the second surface integral in (3.7) and the proposed 
definition in (3.8), it follows that the field at the interior point will depend 
on the shape of the cavity introduced. For example, if the cavity is a 
circular cylinder with axis in the direction of e~, then over the curved 
surface of the cylinder we have 

effn B = 0 (3.9) 

so that the normal component of the "intensity of gravitation" vanishes 
over the curved surface. However, the magnitude of the normal component 
of the "intensity of gravitation" over the circular ends is p. Hence, on 
taking the field point P at the midpoint of the axis of the circular cylinder, 
we find that the magnitude of the field produced at P by the surface 
distributions over the circular ends is 

47rp(1 - cos O) (3.10) 

where 0 is the angle subtended at P by a radius of the cylinder. 
It then follows from (3.7) that the total field at P due to the entire 

distribution of matter has the scalar components 

~(o/r) ,  ~e~e~n~dZ + 47roAB(1 -- COS0) (3.11) 

which tends to the limit 

~(O/  r), ~ eAeffnt~ dE (3.12) 

as 0--+0. Hence the field will be that measured in a small cylindrical pipe. 
On the other hand, if we let 0 - ~ r / 2 ,  the second term in (3.11) survives and 
gives rise to a term which may be regarded as the analog of the term 4~rl 
which occurs in the usual expression for magnetic induction, namely, 
B = H + 4 ~ r I .  

The above results appear to justify the view that N~p occurring in the 
"geodesic deviation equation" 

[which is the analog of (1.1)], o r  gabcd replaced by Cabcd in (1.1), is the 
measure of the gravitational field. 
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4. ANALOGY WITH MAXWELL THEORY 

In this section, we give a simple analogy between the linear gravita- 
tional field discussed above and the Maxwell electromagnetic field. Let the 
indices 1,2,3,4,5,6 denote pairs of tensorial indices according to the 
scheme 

!--23, 2~31,  3~12,  _4~10, 5~20,  _6~30 

If, as suggested by our discussion above for the linear theory, we regard 
the Weyl tensor C A s (A, B --- 1,2, 3, 4, 5, 6) as the analog of the electromag- 
netic field skew tensor F,r then we find from the usual expressions for 
(E, H) in terms of F,r that the ordered triplet 

(C14,C24,C34)  

corresponds to the electric vector 

while the ordered triplet 

(ex,E,,e,) 

(C23,C31 ,C 12) 

corresponds to the magnetic vector 

(Hx, Hy,H,) 

From (2.3), we obtain 

C 14 ~- C24 = C34 = 0  (4.1) 

which are therefore independent of the shape of the cavity (employed in 
our proposed definition above) in much the same way as their analog 
(E x, Ey, Ez). On the other hand, using (2.3) we obtain 

1 "as ,O,13,0,12) (c2,,c,,,c ,2)=-7( (4.2) 

Hence from our previous discussion of N~t ~, it follows that the ordered 
triplet on the left-hand side of (4.2) depends on the shape of the cavity in 
much the same way as their analog (Hx,Hy, Hz). 
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5. C O N C L U S I O N S  
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The  def in i t ion  p r o p o s e d  above  for  the g rav i ta t iona l  f ield inside ma t t e r  
appears  p laus ib le  in the l inear  theory.  Moreover ,  the impl ica t ions  of the 
def in i t ion  bea r  s t r ik ing ana logies  with o rd ina ry  e l ec t romagne t i c  theory.  

However ,  it  r ema ins  to be seen whether  or  not  the p r o p o s e d  def in i t ion  
can be car r ied  over  to the exac t  theory.  A n  a t t e mp t  in this d i rec t ion  is 
r epo r t ed  in a subsequen t  paper .  
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